Neuroblastoma Cells Affects Survival, Differentiation, and Invasiveness of Human TrkB Expression of Brain-derived Neurotrophic Factor and p145
نویسندگان
چکیده
A large number of poor prognosis neuroblastoma (NB) tumors constitutively express brain-derived neurotrophic factor (BDNF) and variably express the gene for its tyrosine kinase (Trk) receptor TrkB. Good prog nosis NB tumors typically express high levels of TrkA mRNA, which encodes the signal transducing receptor for nerve growth factor, pl40TrkA. These neurotrophins are necessary for neural cell survival and differen tiation. This study evaluates the effects of activation of the BDNF-TrkB signal transduction pathway on the growth, survival, morphology, and invasive capacity of NB cells. We find that the addition of BDNF to SY5Y cells induced to express pl45TrkB by retinole acid treatment does not significantly affect cell proliferation yet will support cell survival. Activa tion of the BDNF-TrkB signal transduction pathway stimulates disaggregation of cells and extension of neuritic processes which can be blocked by a BDNF-neutralizing antibody. Treatment of cells with K252a, an inhib itor of Trk, reverses the cellular disaggregation. An evaluation of the effects of BDNF and nerve growth factor on the ability of NB cells to penetrate basement membrane proteins indicated that BDNF stimulated a 2-fold increase while nerve growth factor inhibited RA-SY5Y cell inva sion. Thus, activation of the p 145 ' 'k" signal transduction pathway stim ulates NB cell survival, disaggregation, and invasion; all characteristics of metastatic cells. Furthermore, these studies indicate that activation of different Trk signal transduction pathways in NB cells results in distinct differences in tumor cell biology and these may be relevant to the clinical course of the patients.
منابع مشابه
Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells.
A large number of poor prognosis neuroblastoma (NB) tumors constitutively express brain-derived neurotrophic factor (BDNF) and variably express the gene for its tyrosine kinase (Trk) receptor TrkB. Good prognosis NB tumors typically express high levels of TrkA mRNA, which encodes the signal transducing receptor for nerve growth factor, p140TrkA. These neurotrophins are necessary for neural cell...
متن کاملThe Role of Ciliary Neurotrophic Factor and TRKB Signaling in Neuroblastoma
Neuroblastoma is the most common pediatric cancer in infants, arising from the sympathoadrenal lineage of the neural crest. Despite recent advances in other pediatric cancers, long term survival in high risk cases of neuroblastoma remains below 40%. Therefore, to develop successful therapeutics targeting high risk tumors, further research into the mechanisms involved in high risk tumor formatio...
متن کاملEffect of Endurance Training on Brain Derived Neurotrophic Factor (BDNF) and Tyrosine Kinase B (Trkb) Level in Hippocampus of Ischemic Induced Male Rats
Introduction: Brain derived neurotrophic factor (BDNF) have neuroprotective effect through binding with tyrosine kinase B (TrkB). Thus the Aim of the present study was to investigate the effects of eight weeks endurance training on BDNF and TrkB levels in the hippocampus of ischemic induced male rats. Methods: 40 Male wistar rats (12 weeks old and 228.19±21.18g) were divided into four groups, i...
متن کاملGenetic and pharmacologic identification of Akt as a mediator of brain-derived neurotrophic factor/TrkB rescue of neuroblastoma cells from chemotherapy-induced cell death.
Patients whose neuroblastoma tumors express high levels of brain-derived neurotrophic factor (BDNF) and TrkB have an unfavorable prognosis. Our previous studies indicated that BDNF activation of the TrkB signal transduction pathway blocked the cytotoxic effects of chemotherapeutic drugs via the phosphatidylinositol 3-kinase pathway. Akt is an important downstream target of phosphatidylinositol ...
متن کاملThe neurotrophin receptor TrkB cooperates with c-Met in enhancing neuroblastoma invasiveness.
Neuroblastoma is the most frequent extracranial solid malignancy of childhood with a high mortality in advanced tumour stages. The hallmark of neuroblastoma is its clinical and biological heterogeneity. The molecular mechanisms leading to favourable or unfavourable tumour behaviour are still speculative. However, amplification of the oncogene MYCN and expression of the neurotrophin receptor Trk...
متن کامل